
 1

A High Performance Communication Subsystem for PODOS

Sudharshan Vazhkudai Tobin Maginnis

Department of Computer and Information Science

University of Mississippi

chucha@john.cs.olemiss.edu
ptm@pix.cs.olemiss.edu

Abstract

PODOS is a performance oriented
distributed operating system being developed to
harness the performance capabilities of a cluster
computing environment. In order to address the
growing demand for performance, we are
designing a Distributed Operating System (DOS)
that can utilize the computing potential of a
number of systems. Earlier clustering
approaches have traditionally stressed more on
resource sharing or reliability and have given
lesser priority to performance.

PODOS adds just four new components
to the existing Linux operating system to make it
distributed. These components are a
Communication Manager (CM), a Network
Manager (NM), a Resource Manager (RM), and
Global Interprocess Communication (GIPC).
This paper addresses the communication
mechanism in PODOS.

In any distributed environment,
communication appears to be the performance
bottleneck. Thus, in PODOS, we have
implemented a high-speed communication
subsystem that short circuits the network
protocol stack, and further performs packet
multiplexing (Transmission-Groups) across
multiple network interfaces thereby achieving a
two-fold performance gain.

In this paper we discuss the high-
performance communication subsystem in
PODOS and further analyze the performance
gain achieved by comparing the variants of the
PODOS protocol with traditional networking
protocol.

1.0 Introduction

A distributed operating system (DOS) is
basically the cooperation among a group of
machines interconnected by a network such that
the group of machines appear to the user as a
single operating system. With distributed
operating systems, users are not aware where
their files are stored; nor are they aware that their
programs may be executed by remote machines.
All resources within the network are managed in
a global fashion using global mechanisms rather
than local mechanisms [1].

A group of machines could cooperate
for a variety of reasons. A few of them are (1)
Resource Sharing, (2) Performance
Enhancement, (3) Reliability, (4) Fault Tolerance
and (5) Transparency [1]. Tens of distributed
operating systems have been designed and
implemented with various goals. Most
distributed system designs are willing to
compromise on performance. On the other hand,
systems that are designed to be performance
oriented make no attempt to provide a single
system image. They provide a high-performance
computing environment (e.g., Beowulf [2],
Condor [3], etc). High-performance computing
environments are designed to solve one class of
problems, whereas a PODOS is designed as a
general high-performance computing solution.

With these issues in mind, we are
designing a distributed operating system that is
performance oriented (PODOS) [4]. As a
secondary design goal, PODOS provides a
resource sharing environment.

PODOS is the interaction of two or
more monolithic Linux [5] machines. The
PODOS design has a number of key
performance benefits. A few of these are:

 2

1. PODOS builds upon a highly robust and
performance oriented monolithic Linux
kernel.

2. PODOS adds very few components to
the basic Linux operating system,
thereby maintaining a simple design.

3. Each of these components is designed
to achieve high performance. For
example, the CM uses a custom high-
speed protocol and the NM is tightly
glued to Linux's filesystem to speed up
remote file fetches.
In the following sections we give an

overview of the PODOS design, the network
topology that help building an efficient system.
We then explain the communication subsystem
in PODOS in detail and finally present a
performance analysis with a study of the
preliminary results.

We then explain the communication
subsystem in PODOS in detail and finally
present a performance analysis with a study of
the preliminary results.

2.0 The PODOS Cluster

PODOS is an experimental Linux
cluster being developed at the University of
Mississippi. The primary project objective is to
explore the performance capabilities of a
clustering system, but at the same time
incorporate the basic features of any distributed
operating system. Furthermore, we try to
minimize the additions to the basic operating
system [6]. Each node in the PODOS cluster is a
monolithic Linux kernel. (We have chosen a
monolithic kernel against a microkernel because
the monolithic paradigm suits our goal of high
performance much better.) Our design involves
adding four components to the basic operating
system to support distributed features. These
include

• Communication Manager
• Resource Manager
• Global IPC
• Network Manager

Let us look at these components briefly.

2.1 Communication Manager

The Communication Manager (CM)

handles remote communication in the PODOS.

Responsibility of the CM is to interact with peer
CMs in the cluster. The CM transmits and
receives frames to/from other hosts through a
Local Area Network (LAN). The CMs
implement a minimal send and receive protocol
to the Network Manager (NM), Resource
Manager (RM) and Global Inter Process
Communication (GIPC). The CM accepts remote
host addresses and messages from higher-level
processes (e.g., local-to-remote GIPC, NM-to-
NM and RM-to-RM communication). The CM
will combine these addresses, messages, and RM
status information with an error-free protocol to
send the message to its remote counterpart on the
target machine [6].

2.2 Resource Manager

The Resource Manager maintains

global system state information. Each RM in the
cluster maintains information about every other
node. Although resource management implies
decision making algorithms (processor allocation
algorithms, etc.), the RM is designed to be as
simple as possible for performance. Thus, the
RM provides the primitives required to build
unique resource management strategies.
Typically, a program loader will query the RM
concerning a remote machine. The purpose of
this query is to discover the number of processes,
willingness to accept remote queries, etc. and
based upon these queries, assign processes to
processors. The RM will make use of the CM to
transmit and receive system information in a
broadcast or a piggybacked fashion among its
peers [6].

2.3 Global Interprocess
Communication

The GIPC provides a mechanism with

which processes can communicate in PODOS. It
allocates a global pid (GPID) for every process
in PODOS so that processes can be uniquely
identified. The GPID of each process is the PID
(given to the process in the local machine) and
the IP address of the machine (to record the fact
that the process originated from this particular
machine). GIPC further provides communication
primitives for processes to communicate among
themselves [6].

 3

2.4 Network Manager

The Network Manager will interface

with two Linux basic operating system (OS)
components: the file manager and the process
manager. These basic OS concepts will be
extended to support the notion of a PODOS. File
and process management will be able to
recognize non-local file names and invoke the
NM. NM local-to-remote requests will be carried
out by simply invoking the CM [6].

Let us look at the network architecture
in PODOS.

3.0 The PODOS Network

Topology

PODOS has a special network topology

that aids in implementing an efficient and a high-
performance communication mechanism [7]. Let
us look at a model of the PODOS network
topology. Figure 1 gives an overview of the
PODOS network architecture.

PODOS uses an Ethernet network
interface as the communication media. Each
node represents a machine where node 1, node 2,
... is machine 1, machine 2, etc. PODOS can use
as many interfaces as the system supports. Our
current implementation has three Ethernet
interfaces, namely eth0, eth1, and eth2.
Each node is connected to the public subnet,
W.X.Y.0, through the primary interface, eth0
and thus gets an IP address, W.X.Y.n, where n is
between 1 and 254. Further to this, each node
has two more interfaces, eth1, and eth2
which are connected to private subnets
192.168.1.0 and 192.168.2.0 respectively and
thus get two more IP addresses, 192.168.1.n and
192.168.2.n. Thus each machine in PODOS is a
multihomed host. Private subnets in PODOS are
configured in such a way that machines can
communicate only through the interface pairs
eth0-eth0, eth1-eth1, and eth2-eth2.
More specifically, packets on eth1 can only go
to eth1 on another machine. This can be easily
observed from Figure 1, since the network
192.168.1.0 connects only eth1's in all
machines. Similarly, the network 192.168.2.0
connects eth2's. The Transmission-Groups
feature uses these interfaces in a round-robin
fashion [7].

4.0 Communication in PODOS

Communication in PODOS is handled
by the CM. Higher-level DOS layers (RM, NM,
GIPC, etc.) rely on the CM for packet
transmission and reception. The CM in each
node uses a specialized protocol to talk to its
neighbors. The CM comprises of the following
components:

1. PODOS-packet protocol
2. Communication Descriptor

Table (CDT)
3. Transmission-Groups

Figure 2 demonstrates the relationship
among these subsystems. To the left in Figure 2
is the traditional network protocol stack, the
Open Systems Interconnection (OSI) [8] model
of networking. To the right, in Figure 2, are the

 Figure 1

PODOS components. The communication
subsystem is depicted in more detail. The CM
comprises of three components namely the CDT,
the Transmission-Groups and the PODOS-packet
protocol. The CDT is an interface for higher-
level PODOS layers. Higher-level layers
typically make entries with the CDT. A

Private Subnet 192.168.2.0 / 24

Private Subnet 192.168.1.0 / 24

Internet

Public Subnet
W.X.Y.0 / 24

 W.X.Y.1

 W.X.Y.Z

eth1

eth0

eth2

Node 1 Node n

eth0

eth1

eth2

.61

 .1 .1

 .n
 .n .n

Multihomed

PODOS TOPOLOGY.

Router

 4

Transmission-Group algorithm is applied to each
entry in the CDT. And finally the PODOS-
packet protocol transmits the packet using the
datalink layer of the OSI model. The RM, NM
and GIPC use the CM to communicate with peer
entities in the PODOS cluster. We will now look
at the various components of the CM (Figure 2).

4.1 PODOS-packet Protocol

The PODOS-packet protocol is at the

very bottom of the CM. It provides primitives for
transmitting and receiving PODOS-packets. The
PODOS packet protocol has evolved from a very
rudimentary structure [9]. In this section we will
describe the protocol briefly.
 Since our primary goal is performance
and the typical DOS bottleneck is network
bandwidth, we needed an efficient
communication mechanism that could speed up
packet transmission and reception. We needed
something other than the traditional networking
protocol (left side of Figure 2). The traditional
protocol consists of several layers and each layer
has its own headers and error checking.
However, traditional protocols also contain a lot
of detail to accommodate many types of network
configurations [8]. Thus, we designed and
implemented a distributed operating system
packet (PODOS-packet), which bypasses the
traditional network protocol stack [4].
In Figure 2, we can see how the CM resides
above the datalink layer (Ethernet driver). From
Figure 2 it is also evident how the CM has
moved away from the traditional network layers
and has less overhead. Our approach here is to
have the CM interact with the datalink layer
(Ethernet driver) to transmit and receive packets.
In short, the CM will have to transmit and
receive packets that bypassed the network
protocol stack. This would mean that the CM
packets would have to have a separate protocol
ID [9], one that is different from IP, ICMP etc.
 Now let us look at the CDT.

4.2 The Communication Descriptor
Table

The CDT is the CM's interface to the

other PODOS layers. The CM shields the higher-
level PODOS layers by performing all the
intricate details involved with packet

transmission. The higher-level PODOS protocols
register their packets with the CDT. The CM
picks up packets from the CDT and transmits the
packets. The CM also uses the CDT to construct
a virtual circuit, which helps in streamlining
communication between peer components [10].
The CM also maintains a simple timeout
mechanism by which it can keep track of errors
and retransmissions. Thus, the CM maintains a
simple and elegant protocol for packet delivery
[6].

 Figure 2

4.2.1 The CDT Structure

 A fully functional communication
descriptor table has marked a milestone in the
evolution of the CM. The higher-level PODOS
layers fill in a CDT entry and invoke the CM.
The CM picks up the PODOS-packet from the
CDT and transmits it. A typical entry in a CDT
is described in Table 1 [10].

4.2.2 Classes of CDT entries

Communication descriptor table entries can

be classified into two categories based on the
time spent in the table. They are:

• Ephemeral
These entries are short duration entries and

release the CDT slot once the packet has been
transmitted. An example of such a request that is
short-lived is the RM query. The RM

CMApplication

Presentation

Session

Transport

Network

Datalink

Physical

 CDT

Transmission-Groups

PODOS-proto

Protocol id = 0x1975

NM RM GIPCProtocol Stack

 5

periodically broadcasts system information to all
the nodes in the cluster. It does not wait for the
arrival of any packet. Whenever a broadcast
message arrives the CM invokes the RM. Thus
the RM would register its packet in the CDT and
invoke the CM. Once the CM transmits the
packet, it releases the CDT entry corresponding
to the RM query [10].

• Virtual Circuits (VC)
When a higher-level PODOS protocol

wishes to communicate with its peer for a longer
duration, it usually requests the CM to establish
a virtual circuit. The virtual circuit is nothing but
a {cdt-active-index, cdt-passive-index} pair.
When a higher-level PODOS layer (at the active
end) requests such an entry, the CM makes a
CDT entry and transmits the packet. The peer
CM (at the passive end) receives the packet,
makes a CDT entry and then invokes the
appropriate layer. Henceforth, any
communication between these two layers would
go through this virtual circuit. This helps in
streamlining the subsequent flow of packets [10].

Now let us look at the PODOS-packet
structure.

4.3 The PODOS-packet Structure

Table 2 describes the PODOS-packet

structure and also illustrates the importance of
each field [10].

Now let us look at how PODOS handles
Transmission-Groups.

5 Transmission-Groups

Transmission-Groups is a suite of
algorithms that multiplex packets across multiple
network interfaces. Transmission-Groups exploit
parallel networks connected among distributed
computers and thereby match the external
aggregate network bandwidth with internal
memory bandwidth. The CM employs
Transmission-Groups to achieve further
performance gains over the PODOS-packet
protocol. The PODOS cluster is configured in
such a fashion that the suite of Transmission-
Group algorithms can exploit the network
architecture. Each node in PODOS has been
configured with multiple Ethernet interfaces
(Figure 1). This increases the LAN bandwidth

and effectively utilizes the communication
media. Once the higher-level PODOS layers
register their packets with the CDT, the CM
decides which interface the packet should go
through. This decision-making is Transmission-
Groups [7].
Struct comm_desc_tab {

struct
PODOS_pkt pkt;

The PODOS-packet structure is
embedded in the CDT

char *to_pid[8]; Higher-level layers specify the
process id in the remote machine to
whom the packet is sent. This could
be a group of processes to support
group communication.

int to_pid_cnt; The count of the processes
referencing this CDT entry.

int need_reply;

Whether the CDT entry should be
held for a longer time. For example,
RM requests are typically short lived
as compared to NM or GIPC
requests.

Char
*hostname[20];

The name of the machine to whom
the packet is being sent. Could be list
of machine names (for group
communication).

int host_cnt; The count of machine names.

Struct interface
if;

The interface structure (will be
discussed later).

};

Table 1

struct PODOS_pkt
{

 char
from_pid[8];

The global pid of the process from whom the
packet is originating.

 char to_pid[8]; The global pid of the process to whom the
packet is being sent.

 char ctrl_info; This is a one byte field that is used by the CM
to differentiate NM, RM and IPC packets. It
uses the least significant 3 bits. Higher-level
protocols use the most significant 5 bits. For
example, the NM would use it to differentiate
open, read, write, close, etc.

 int
cdt_active_ind;

The CDT index at the active end (the end that
originated the connection).

 int
cdt_passive_ind;

The CDT index at the passive end (the end that
is accepting the connection).

 int
wake_active_passi
ve;

Since the CM code is the same for active and
passive ends, it needs to know which process to
wake up.

 int length; The length of the data being sent.

 char data[1400]; The data.

};

 Table 2

 6

Transmission-Group algorithms are

applied only to PODOS-packets in the cluster.
PODOS-packets can travel on any one of the
three interface pairs (The following denote active
end interface-passive end interface: eth0-
eth0, eth1-eth1, and eth2-eth2).
Whereas regular network traffic (IP, ICMP,
IGMP packets) continue to go through eth0
only. If we wish to multiplex those packets too,
then we would have to employ an algorithm
similar to Transmission-Group suite at a higher
level in the network protocol stack.

Now let us look at Transmission-
Groups in more detail.

5.1 Transmission-Group Suite

The Transmission-Groups is a suite of

algorithms, each based on a different goal. We
provided a set of routines (round-robin, load
based) so that one may select the best algorithm
that suits their requirements. The Transmission-
Group routine is held as a function pointer in the
interface structure (described in Table 3) in the
CDT entry. When a higher-level layer wishes to
transmit a packet it makes an entry in the CDT
and invokes the CM. The CM initiates the
Transmission-Group algorithm by invoking the
function pointer. The function pointer is set
during system initialization.

The following section describes a
simple round-robin Transmission-Group
algorithm that multiplexes virtual-circuits across
multiple interfaces.

5.1.1 Round-Robin with VC multiplexing

PODOS employs a simple round-robin

mechanism to multiplex packets across multiple
network interfaces. But since, multiplexing
packets would result in ordering and sequencing
issues, PODOS multiplexes virtual circuits. This
implies that all packets resulting from a virtual
circuit would be transmitted on a particular
interface pair. Inshort, PODOS employs a "1-
Interface-for-all-Packets-in-a-VC" rule. This
ensures that packets reach their destination in
order and saves us the trouble of ordering them.
Ephemeral packets (packets resulting from an
Ephemeral CDT entry, a RM packet) would be
transmitted on the current interface (maintained

by the Transmission-Group routine). Let us look
at this algorithm in more detail.

Implementation
The round-robin algorithm maintains an

interface counter which it increments for every
virtual circuit. This counter is reset once it
reaches IF_MAX. The algorithm differentiates
virtual circuits from ephemeral entries by
looking at the control byte of the packet. Let us
discuss the implementation of VC multiplexing
with reference to a NM remote file-write. The
local NM wishes to write a file to another node
by contacting its peer entity in the other node.
This NM file-write request is characterized by an
open call, a sequence of write calls and then a
close call. This is a typical virtual circuit. Once
the NM decides to write a file to another node, it
builds a PODOS-packet, makes a CDT entry and
invokes the CM. Embedded in the CDT entry is
the interface structure. Below is Table 3
describing the interface structure.

struct interface if {

 char
active_interface[6];

The hardware address of
the interface at the active
end.

 char
passive_interface[6];

The hardware address of
the interface at the
passive end.

 Int
(*elect_interface)(struct
device *);

Transmission-Group
algorithm held as a
function pointer. This is
the function that round-
robin's packets.

};

Table 3

Having the interface structure in the

CDT entry is the key to the algorithm. Each
entry will have such a structure and packets can
be transmitted to/from the address specified in
the interface structure. Once an entry is made in
the CDT, the Transmission-Group routine
corresponding to that CDT entry is launched by
calling cdt[i]->elect_interface(), where i denotes
the particular entry. The Transmission-Group
algorithm maintains a simple round-robin
strategy with which it multiplexes virtual
circuits.

Now, when the higher-level layer (NM)
registers subsequent packets in the CDT, the CM
just inspects the interface structure of the CDT
entry and transmits the packet to the

 7

passive_interface address on the active interface
address. Thus, with this approach, the
Transmission-Group routine is invoked only
once per virtual circuit (or CDT entry) and all
packets belonging to one virtual circuit are
transmitted on the same interface pair. Thus, the
algorithm makes a basic assumption that
"virtual circuits have the potential to generate
a lot of traffic on the interface". Hence, the
algorithm attempts to uniformly distribute virtual
circuits across the three interfaces. Ephemeral
entries do not contribute much to the interface
load and thus the algorithm does not worry about
such packets [7].

6.0 Performance

In this section we analyze the
performance capabilities of PODOS protocol and
its variants. We further compare them with the
traditional TCP/IP protocol and present the
preliminary results based on this analysis.

 Figure 3

In order to study the behavior of these
two protocols, we conducted a series of
experiments, each with a different objective, and
measured the average round trip time (Average
RTT) in each case. All our experiments involved
comparing variants of the PODOS protocol with
the traditional networking protocol under various
network loads [11].

Each experiment:
• Computes the average RTT of

packets using 10 sets of 100
packets each.

• It discards the maximum and the
minimum set and then computes
the average.

• Transmits each packet with a 1 sec
delay.

Let us look at each experiment in detail.

Experiment #1
In this experiment we compare the

RTT's of a simple PODOS protocol with a
typical socket read/write call of the TCP/IP. The
experiment transmits 10 sets of 100 packets
each. Each packet is 64 bytes long and is
transmitted with a 1 sec delay. Table 4 depicts
the results. Figure 3 depicts the performance gain
achieved. From the graph it is evident that

PODOS protocol out-performs
traditional networking protocol and is almost
twice as fast. The RTT difference is substantial

at higher network loads. The graph depicts
RTT’s for loads upto 35% - 40%. This is because
35% - 40% network load is a substantial network
load and the system is saturated at that load. In
normal circumstances, the multiprogramming
level would further increase the RTT thus
making the load substantial.

Tpodos-Tsocket

0

500

1000

1500

2000

2500

3000

3500

4000

< 5% 5% 10% 15% 20% 25% 30% 35%

Network Load

A
ve

ra
g

e
R

T
T

 (
m

ic
ro

 s
ec

s)

T(podos)

T(socket)

 8

Network T(podos) T(socket)
Load Micro secs Micro secs
< 5% 271 578
5% 389 702
10% 787 1435
15% 1073 1456
20% 1669 2460
25% 2454 3381
30% 2524 3723
35% 3104 3746

 Table 4

The RTT for the PODOS protocol is of the form:

 Figure 4

The RTT for a PODOS packet is the sum of the
times taken to build a PODOS packet, build an
Ethernet packet, the driver transmit time (the
time taken by the driver to place the packet on
the physical media after its transmit function has
been invoked), and the propagation time. The
propagation time includes forward and backward
propagation and the filter time. The forward
propagation is the time taken for the packet to
reach its destination after it has been placed on
the physical media. The backward propagation
time includes the time taken by the passive end

to filter out the PODOS packet and reply. The
filter time is the time taken by the filter, installed
in the datalink layer, to extract PODOS packets.
Of these, the propagation time is entirely
dependent on the network load and the rest
depend on the multiprogramming level of the
system.

Experiment #2
 In this experiment we compare the
RTT's of three protocols, the TCP/IP, the simple
PODOS protocol, and PODOS with
Transmission-groups. The PODOS with
Transmission-groups is a variant of the PODOS
protocol that transmits PODOS packets across
multiple interfaces. In this case we vary the
network load only on the primary interface and

maintain minimal load on the other two
interfaces. The Transmission-Groups based
communication is a simple divide-and-conquer
strategy. It divides the tasks in hand equally
among interfaces thereby sharing load and
enhancing system throughput. Table 5 depicts
the results.
 Figure 4 is a graphical representation of
the results of this experiment. The T(tg-
minload) is the average RTT when transmitting
packets across multiple interfaces, with varied
load on the primary interface and minimal load

T = T + T + T

T = T + T + T

T = T + T + T

po dos bu ild - po dos - pk t xm it prop agatio n

xm it a lloc - net - bu ff bu ild - E thernet - pk t drv - xm it

prop agatio n fo rw ard - prop agatio n back w ard - prop agatio n filter

���������������������
���������������������

�����������������������
�����������������������

���������������������
���������������������

�����������������������
�����������������������

���������������������
���������������������

�����������������������
�����������������������

Tpodos-Tsocket-Ttg_minload

0
500

1000
1500
2000
2500
3000
3500
4000

5% 10% 15% 20% 25% 30% 35%

Network Load

A
ve

ra
g

e
R

T
T

 (
m

ic
ro

se

cs
)

T(podos)
T(socket)�������������������

�������������������T(tg-minload)

 9

on the other 2 interfaces. In Figure 4, we can
observe the drastic performance gain with
Transmission-Groups. We can see how the
Transmission-Groups based PODOS protocol
performs consistently at higher loads. It is almost
3 times faster than the regular networking
protocol. Transmitting PODOS packets across
multiple interfaces reduces the load on a
particular interface and thus decreases the RTT
of packets.

Net T(podos) T(socket) T(tgminload)
Load Micro secs Micro secs Micro secs
5% 389 702 359
10% 787 1435 510
15% 1073 1456 679
20% 1669 2460 700
25% 2454 3381 887
30% 2524 3723 1172
35% 3104 3746 1766

 Table 5
The RTT is of the form:

The RTT is the time taken to transmit a regular
PODOS packet plus the time taken by the
Transmission-Group algorithm. The
Transmission-Group algorithm usually takes
around 100-150 micro seconds, which is very
less overhead when compared to the
performance gain.

 Figure 5

Experiment #3
This experiment is similar to the

previous one except that we compare only the
PODOS variants namely, the simple PODOS, the
PODOS with Transmission-Groups (minimum
load on secondary and tertiary interfaces), and
the PODOS with Transmission-Groups
(approximately same load on all interfaces). In

this case we vary the network load on all
interfaces. Table 6 depicts these results.

Net T(podos) T(sameload) T(tgminload)
Load Micro secs Micro secs Micro secs
5% 389 386 359
10% 787 537 510
15% 1073 968 679
20% 1669 1105 700
25% 2454 1155 887
30% 2524 1239 1172
35% 3104 1935 1766

 Table 6
We can observe the stability of the T(sameload)
protocol at high loads, 20%, 25%, and 30%. The
RTT varies by very meager amounts. Figure 5
depicts these results. From Figure 5 it is evident
that even when the load on all interfaces is
approximately the same, it is profitable to
distribute packets among interfaces rather than
transmitting them on a single highly loaded
interface.

Let us consider the 30% load case. The
primary interface was already 30% loaded and
transmitting another 1000 packets resulted in a
RTT of 2524 micro seconds. This loads further a
highly loaded interface. Whereas dividing the
1000 packets among 3 interfaces and
transmitting 333 packets on each interface
resulted in an RTT of 1239 micro seconds which

is less than half the RTT of a simple PODOS.
Thus Transmission-Groups is beneficial even in
a heavily loaded case.

From the above three graphs we can
derive the following relation that holds under all
network loads:

�����������������
��������������������
��������������������

�����������������������������������
��������������������
��������������������

������������������
������������������

Tpodos-Tsocket-Ttg_sameload

0

500

1000

1500

2000

2500

3000

3500

5% 10% 15% 20% 25% 30% 35%

Network Load

A
ve

ra
g

e
R

T
T

 (
m

ic
ro

se

cs
)

T(podos)
T(tg-sameload)

������������������
T(tg-minload)

T = T + Trtt p o do s tgc o m m

T < T < T < Ttgco m m - m in load tgco m m - sam eload pod os socket

 10

The relation that is of more interest to us is the
Transmission-Groups at approximately same
load and the socket. From the above graphs it is
obvious that the RTT of Transmission-Groups
would be much better than that of a socket
read/write.

Experiment #4
This experiment is to measure the

connection establishment time of the PODOS
protocol. We further compare this to traditional
socket connection establishment in TCP/IP.
Connection establishment in PODOS implies
making a CDT entry at the active end,
transmitting the packet, making a CDT entry at
the passive end and responding back to the active
end. This signifies a virtual circuit. We further
time the read and write of the first 1500 byte
packet through this circuit. In traditional socket
connection this involves the following system

 Figure 6

calls: socket(), bind(), and connect(). Table 7
depicts the results of this experiment. From
Table 7 we can observer that T(cdt) is very stable
and consistent at network loads. Figure 6 depicts
these results.

Net T(cdt) T(socket-conn)
Load Micro secs Micro secs

< 5% 2457 3255
10% 2800 3378
20% 3041 4000
30% 3401 4742
40% 3653 5000

 Table 7

The connection establishment in
PODOS includes the server setup time too,
whereas in typical socket connections, the server
is assumed to be listening for a connection and
thus server setup time is ignored. And server
setup time typically takes around 500-800 micro
seconds. Further, the results above depict
connection establishment without Transmission-
Groups. Thus, in reality, the performance gain is
much more.

The RTT is of the form:

A typical cdt entry creation, under an

optimal multiprogramming level takes around
200 micro seconds which is lesser than standard
connection setup time.

7.0 Conclusions

In this paper we have dealt with the
communication aspect in PODOS. We have
described a custom communication protocol that
employs a round-robin Transmission-Groups
mechanism to multiplex packets across multiple
network interfaces and provides a
communication descriptor table as an interface
for other PODOS layers such as NM, RM and
GIPC. We then presented a detailed performance
analysis of the PODOS communication protocol.
We analyzed the performance of the variants of
the PODOS protocol (the simple Transmission-

Tcdt-Tsocket-conn

0
1000
2000
3000
4000
5000
6000

< 5% 10% 20% 30% 40%
Network Load

A
ve

ra
g

e
R

T
T

 (
m

ic
ro

se

cs
)

T(cdt)
T(socket-conn)

T = T + Trtt p od o s cd t

 11

Groups, Transmission-Groups under load) and
further compared it with traditional networking
protocol.

The CM is undergoing a major
metamorphosis currently with the addition of
error checking mechanism in the CDT. Variants
of Transmission-Groups attempt to speed-up
PODOS packets alone. A tremendous
performance gain can be achieved if a similar
packet multiplexing mechanism can be applied
to other packets. For this purpose we could use
the Channel-Bonding feature provided by the
Beowulf that helps in multiplexing regular
network packets. These features would make the
CM more robust and reliable.

References

[1] A. Goscinski, "Distributed Operating Systems The
Logical Design," Addison-Wesley Publishing
Company, 1991.

[2] P. Merkey, "Beowulf Project at CESDIS,"
http://beowulf.gsfc.nasa.gov, 1994.

[3] M.J. Litzkow, M. Livny, and M.W. Mutka,
"Condor-A Hunter of Idle Workstations," Proceedings
of the 8th International Conference on Distributed
Computing Systems, June 1988, pp. 104-111.

[4] S. Vazhkudai, P.T. Maginnis, "Distributed Linux:
Evolutionary Steps," Technical Report TR 1998-22,
Computer Science Department, University of
Mississippi, December 98.

[5] "The Linux Documentation Project,"
http://sunsite.unc.edu/LDP, 1998.

[6] P.T. Maginnis, "Design Considerations for the
Transformation of MINIX into a Distributed
Operating System," Proceedings of the 1988 ACM 16th
Annual Computer Science Conference, 1988, pp. 608-
615.

[7] S. Vazhkudai, P.T. Maginnis, "Transmission-
Group based Communication for PODOS,"
Proceedings of the LinuxWorld Expo Conference, San
Jose, August 99.

[8] A.S. Tanenbaum, "Network Protocols," ACM
Computing Surveys, vol. 13, no. 4, Dec. 1981, pp.
453-489.

[9] S. Vazhkudai, P.T. Maginnis, "The Design and
Evolution of Communication in PODOS,"
Proceedings of the 3rd ALS, USENIX Conference,
Atlanta, October 99.

[10] S. Vazhkudai, P.T. Maginnis, "Performance
Oriented Distributed Operating System (PODOS),"
Technical report Computer Science Department,
University of Mississippi, May 99.

[11] D.R. Boggs, J.C. Mogul, C.A. Kent, "Measured
Capacity of an Ethernet: Myths and Reality," ACM
SIGCOMM'88 Symposium, vol. 18, no. 4, Aug. 1988,
pp. 222-234.

